Functional characterization of terpene glycosyltransferases from Vitis vinifera

Antragsteller:
Professor Dr. Ernst H. Rühl
Hochschule Geisenheim University
Von-Lade-Straße 1
65366 Geisenheim
Telefon: +49 6722 502121
Telefax: +49 6722 502120
E-Mail: e.ruehl@fa-gm.de
Professor Dr. Wilfried Schwab
Technische Universität München
Wissenschaftszentrum Weihenstephan
Fachgebiet Biotechnologie der Naturstoffe
Liesel-Beckmann-Straße 1
85354 Freising
Telefon: +49 8161 712912
Telefax: +49 8161 712950
E-Mail: schwab@wzw.tum.de
Professor Dr. Matthias Wüst
Rheinische Friedrich-Wilhelms-Universität Bonn
Institut für Ernährungs- und Lebensmittelwissenschaften
Endenicher Allee 11-13
53115 Bonn
Telefon: +49 228 732964
Telefax: +49 228 733499
E-Mail: matthias.wuest@uni-bonn.de

Fachliche Zuordnung
Lebensmittelchemie

Förderung
Förderung seit 2010

Projektbeschreibung

Terpenoids represent one of the major classes of natural products and are used in many applications, from health care and pharmaceutical uses to colour, flavour and fragrance compounds in food and cosmetics. Biosynthesis occurs through either the mevalonic acid or the 1-deoxy-D-xylulose 5-phosphate pathway. In plants, terpenoids are further decorated with sugars which are linked to the active groups OH and/or COOH. In grapes (Vitis vinifera) and wines, where the importance of monoterpenes on varietal flavour is widely recognized a major fraction of these compounds is present as non-volatile, aroma-inactive terpene glycosides. Although this water-soluble fraction is a precious source of aroma, little is known about the genes and their encoded enzymes catalyzing the glycosylation of terpenols in grapes. A recent functional analysis of Arabidopsis thaliana glycosyltransferase (GT) genes has yielded 27 sequences whose encoded proteins glucosylate a diversity of terpenes. We have extracted 67 homologous, putative GT sequences from the published Vitis vinifera genome database which cluster into 8 subgroups. Spatial and temporal expression levels of the potential VvGT genes will be determined in different grape varieties and will be compared with the levels of terpene glycosides in different tissues to narrow down the number of putative terpene VvGTs. The most promising members of the subgroups will be heterologously expressed and biochemically characterized with a number of potential terpenol substrates. Stereo- and regioselectivity of the recombinant proteins will be determined for a variety of terpenoids. The results can be applied in breeding programs to select for genotypes with low terpene GT activities and, presumably, higher levels of aroma-active, free terpenols and to develop biotechnological processes as alternative to chemical synthesis.

DFG-Verfahren
Sachbeihilfe

Fachliche Zuordnung
Lebensmittelchemie

verfahrenstechnischer
Torsten Hotopp

DFG-Anspruchpartner:

GEPRIS ist ein Projekt der Deutschen Forschungsgemeinschaft.
Sie erreichen GEPRIS unter http://www.dfg.de/gepris
(c) 1999 - 2013 Deutsche Forschungsgemeinschaft (http://www.dfg.de)